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Abstract
The temperature dependence of spin and orbital local magnetizations is theoretically
determined for the non-bulk atomic region of (001) and (110) Fe slab systems. A d band
Hamiltonian, including spin–orbit coupling terms, was used to model the slabs, which were
emulated by using Fe films of sufficient thickness to reach a bulk behavior at their most inner
atomic layers. The temperature effects were considered within the static approximation and a
simple mean field theory was used to integrate the local magnetic moment and charge thermal
fluctuations. The results reflect a clear interplay between electronic itinerancy and the local
atomic environment and they can be physically interpreted from the local small charge transfers
occurring in the superficial region of the slabs. For recovering the experimental behavior on the
results for the (001) slab system, the geometrical relaxations at its non-bulk atomic layers and a
d band filling variation are required. A study on the magnetic anisotropy aspects in the
superficial region of the slabs is additionally performed by analyzing the results for the orbital
local magnetization calculated along two different magnetization directions in both slab
systems.

1. Introduction

The local atomic environment and temperature dependence
of the magnetic properties in the superficial region of a
macroscopic transition metal (TM) magnetic system play
a fundamental role in experimental situations where these
systems are in physical interaction with other nanostructured
magnetic systems such as clusters or thin films [1]. As
it is known, a full characterization of this dependence can
help to determine the general character of the mentioned
physical interaction and also to know how it will affect,
in turn, the magnetic properties of the whole interacting
system. On the other hand, the theoretical study of the finite
temperature magnetic properties in the superficial region of a
TM magnetic material gives the opportunity to explore and

observe in a detailed way the magnetism of a system with
reduced dimensionality [2–7]. This kind of study could help in
obtaining new insights in the development of novel materials
for technological purposes.

In recent years [5], the use of several experimental
techniques, such as spin-resolved secondary electron emission
[2] or spin-resolved photo-emission [3], have been used to
determine, with atomic resolution, the temperature dependence
of the magnetization in the superficial region of TM magnetic
systems. Unfortunately, these techniques average over several
adjacent atomic layers giving the same bulk-like behavior in
the temperature dependence of the magnetization on and near
the surface of the systems. However, other relatively recent
experimental approaches using photo-emission dichroism or
spin-polarized electron capture techniques [4, 5] have proven
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to be successful in obtaining the desired atomic resolution.
In particular, Pfandzelter and Potthoff [5] measured the
temperature dependence of the magnetization in the superficial
region of a macroscopic Fe (001) slab with a one-monolayer
resolution and obtained a linear trend in the most superficial
atomic layers. In addition, they studied the problem in a
theoretical way by using a Heisenberg Hamiltonian in the
mean field approximation and found that their calculations
give a good description of the local magnetization at finite
temperature. In this work, we are extending the theoretical
part of the work of Pfandzelter and Potthoff to determine, in
the framework of an itinerant electron model, the spin and
orbital contributions to the total magnetization in the system.
To the best of our knowledge, this is the first time that
the temperature dependence of the orbital magnetization has
been theoretically determined for a TM system with effects
of reduced dimensionality. Besides this relevance, some
conclusions concerning the magnetic anisotropy aspects in the
superficial region of the system are also inferred from the
results for the orbital magnetic polarization calculated along
several magnetization directions. The research of the electronic
itinerancy effects at finite temperature on the magnetism of the
system in its superficial region is highly desirable because of
the abrupt change in the local atomic environment occurring at
its boundary.

Although many theoretical calculations involving spin–
orbit coupling (SOC) effects in TM magnetic systems are
already found in the literature for zero temperature [8, 9]
(ground state), for finite temperatures, this kind of calculation
is scarce because of the difficulties introduced by many-body
aspects [10]. When we try to obtain reliable results for finite
temperatures, one arrives at the problem of implementing
and/or developing theories which consider the relevant
physical aspects related to the properties of the systems under
study. In the case of itinerant electron magnetic systems
with reduced dimensionality, the electronic itinerancy and the
SOC interaction (responsible for the orbital polarization in
a TM magnetic system) must be taken into account by the
theory in order to obtain a proper dependence on the local
atomic environment in the results. In the literature, one can
find several different approaches for calculating the magnetic
properties of itinerant electron magnetic systems which take
(or could take) into account these two physical aspects. One
can mention, for instance, the case of the static Hartree–Fock
and Gutzwiller approximations, dynamical mean field theory
(DMFT) applied on Hubbard-like Hamiltonians and spin
fluctuation theories (SFT). Some of these approaches, such as
the static Hartree–Fock and Gutzwiller [11] approximations,
were originally developed for working only at zero temperature
and their extensions to the finite temperature region are
considered as equivalent to the SFT approaches. Some
others, such as the DMFT [12] implemented on Hubbard-like
Hamiltonians, are approaches which handle in a reliable way
the finite temperature magnetic properties related to electron
correlation effects. However, the current implementations
of the DMFT for the systems of our interest are based
on mean field Monte Carlo calculations which could with
difficulty quantify the effects of the SOC interaction on the

finite temperature magnetic properties, due to the relatively
small intensity of the SOC interaction. Moreover, these
implementations have been performed only, to the best of our
knowledge, for the bulk cases of transition metal ferromagnetic
systems and they have shown that the considered electron
correlation effects do not play a very important role on some
magnetic properties such as the Curie temperature and the
qualitative functional dependence of the magnetization with
temperature. On the other hand, the SFT [13–15] approaches
are methods based on a decoupling of the spin and charge
fluctuation transitions from the electronic hopping transitions
on the basis of characteristic times. These approaches have
been implemented on several models based on Hubbard, spd
band and ab initio Hamiltonians. The success of the different
implementations depends on the physical characteristic of the
Hamiltonian model and mean field approach used for the
specific implementation. In this work, we use a previously
implemented finite temperature mean field SFT theory [14, 15],
which considers the local atomic environment dependence
of the electronic structure of a TM magnetic system and
includes, for the first time, the SOC effects in a non-
perturbative way. This theory is based in the use of a d band
Hamiltonian and handles the finite temperature effects within
the static approximation. In our approximation, the local
fluctuations of the charge and magnetic moments originated
by temperature effects are integrated into an effective medium
by a simple mean field approach, which allows us to perform
the calculations in feasible computational times. The Fe slabs
are modeled by employing Fe films of a thickness sufficient to
obtain, in a general way, the bulk behavior at their inner atomic
layers.

The organization of the paper is as follows. In section 2,
the theory used for the calculations is presented. In section 3,
the local spin and orbital magnetization results are shown
and discussed by analyzing their dependence on the local
atomic environment of the system in question. Some magnetic
anisotropy aspects, derived from the results for the orbital
magnetization calculated along two different magnetization
directions on the slabs, are also discussed in this section.
Finally, section 4 summarizes the main conclusions of
this work, indicating goals, limitations and some possible
extensions.

2. Theory

To model the itinerant magnetism and the orbital polarization
of a TM magnetic system we use the d band Hamiltonian [16].
This model is known from the literature to correctly describe
the dependence of several magnetic properties (e.g. spin
and orbital local moments and anisotropy energies) on the
atomic local environment of transition metal systems with
the effects of reduced dimensionality at zero temperature
(see for example [8, 9]). The model is constructed on the
basis that the magnetic properties of these systems can be
described with electrons occupying quantum states with an
atomically localized nature, which are constructed by atomic
d orbital states and form d narrow energy bands on the system.
The localized nature of the atomic d orbital states leads to
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three important facts, an atomically localized character of
the d electron–electron Coulomb interaction, a non-strong
dependence of this Coulomb interaction on the local atomic
environment and a relatively low hybridization of the narrow
d band with the conduction sp bands of the systems. The
effects of considering non-local d Coulomb interactions and/or
hybridization effects with sp bands are generally small for
zero temperature (they are of relative importance for zero
temperature only for transition metal systems with an almost
filled d band), as it can be consulted in [17]. The model is
defined by

Ĥ = Ĥ0 + ĤI + ĤSOC, (1)

where the first term

Ĥ0 =
∑

l,α,σ

ε0
l n̂lασ +

∑

l �=q
α,β,σ

tαβ

lq ĉ†
lασ ĉqβσ (2)

describes the one electron electronic structure of the valence d
electrons in the tight-binding approximation. ĉ†

lασ (ĉlασ ) refers
to the creation (annihilation) operator of an electron with spin
σ at the atomic orbital α of atom l (α ≡ xy, yz, zx , x2−y2, and
3z2 − r 2) and n̂lασ = ĉ†

lασ ĉlασ is the electron number operator
at the same atom. ε0

l is the bare d-level energy of an electron
occupying the isolated atom and tαβ

lq are the hopping integrals
between atoms l and q . The second term

ĤI = 1
2

∑

l,α,β
σ,σ ′

′Uσσ ′ n̂lασ n̂lβσ ′

= 1
2

∑

l

(U N̂2
l − 2J Ŝ2

lz − (U − J/2)N̂l ) (3)

takes into account the interactions among electrons by an
intra-atomic Hubbard-like model. The Coulomb repulsions
between electrons of spin σ and σ ′ are denoted by Uσσ ′ .
U = (U↑↓ + U↑↑)/2 represents the average direct Coulomb
integral and J = U↑↓ − U↑↑ the average exchange integral.
N̂l = ∑

ασ n̂lασ is the total number operator at atom l
and Ŝlz = (1/2)

∑
α(n̂lα↑ − n̂lα↓) is the z component of

the total spin operator at the same atom. Note that terms
of the form Ĥxy = − ∑

l,α,β Jαβ(Ŝ+
lα Ŝ−

lβ + Ŝ−
lβ Ŝ+

lα), which
represent transversal-spin-like interactions, have been dropped
in equation (3). However, this is not expected to be a
serious qualitative limitation in the present work, since we are
interested in studying the effects of spin fluctuations on broken-
symmetry ferromagnetic ground states. The third term

ĤSOC = ξSOC

∑

l,mσ,m′σ ′
( �L · �S)mσ,m′σ ′Ĉ†

lmσ Ĉlm′σ ′ (4)

models the SOC interaction, where ξSOC is the SOC parameter
and Ĉ†

lmσ (Ĉlmσ ) is the creation (annihilation) operator for
an electron with spin σ at the spherical harmonic orbital
m of atom l (m = −2,−1, 0, 1, 2). The SOC interaction
magnetically reveals the structural anisotropy of a TM system
and generates the biggest part of the total amount of its
orbital polarization. Notice that the creation and annihilation
operators used for expressing ĤSOC are different from those
used for expressing the rest of the Hamiltonian terms in
equations (1)–(3). In practice, only one kind of these operators

is used when we are realizing the calculations and this depends
on the physical quantities involved. The transformation from
one kind of operator to another is performed following the
canonical second quantization rules [18], which in this case
involve the known relationship between atomic d-orbitals and
spherical harmonics.

Within the model described above, the magnetic properties
of a TM system at finite temperature can be determined by
applying a grand canonical version of the functional-integral
formalism implemented in [19] and [20] for the study of 3d
TM clusters. This formalism is a variant of the original one
developed by Hubbard and Hasegawa for studying periodic
solids [13]. In the referenced formalism, the quadratic terms
in equation (3) are linearized inside the partition function
by means of a two-field Hubbard–Stratonovich transformation
and, straight afterward, the spin and charge local fluctuations
are decoupled from the relatively faster electronic hopping
transitions by applying the static approximation [21]. After
that, the system appears as formed by local charge and
exchange fields fluctuating in an independent way and, by
using the fact that J � U , the thermal fluctuations of the
local charge fields are partially neglected by setting these
fields equal to their local-exchange-field-dependent saddle-
point values. This focuses the theory on the magnetic aspects
of a system and leads to a self-consistent determination of the
charge distribution for each configuration of the local exchange
fields �ξ = (ξ1, ξ2, ξ3, . . .). In a brief way, we have for the grand
canonical case

Z ∝
∫

d�ξ Z̃ ′(�ξ), (5)

where

Z ′(�ξ) = exp{−β F(�ξ)}
= exp

{
β

2

∑

l

[
Uν2

l − J

2
ξ 2

l

]}
Tr[exp{−β(Ĥ ′ − μN̂)}].

(6)

In this equation,

Ĥ ′ = Ĥ0 + ĤSOC +
∑

lασ

(Uνl − σ J/2ξl)n̂lασ (7)

is the Hamiltonian associated to the exchange fluctuations of �ξ ,
including the SOC interaction in a full way and with the bare d-
energy level redefined as ε0

l ≡ ε0
l −(U − J/2)/2. The quantity

F(�ξ) in equation (6) represents a free energy associated to
the exchange field configuration �ξ . The self-consistent saddle-
point values

νl = 〈N̂l 〉′�ξ (8)

are calculated by taking averages at temperature T in the one
electron states (this is indicated by the quote on the average
symbol). The thermodynamic properties can be obtained
by averaging over all possible �ξ with exp{−β F(�ξ)} as the
weighting factor. For example, the local spin magnetization
for the z direction at the atom l can be expressed as

Mlz (T ) = −μB

Z

∫
d�ξ 2〈Ŝlz 〉′�ξ e−βF ′(�ξ)

= −μB

Z

∫
d�ξ ξl e

−βF ′(�ξ), (9)
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where μB is the Bohr magneton. Analogous relations to
equation (9) exist for the local orbital magnetization and local
charge. For instance, the local orbital magnetization for the z
direction can be calculated as

Llz(T ) = −μB

Z

∫
d�ξ 〈L̂lz〉′�ξ e−βF ′(�ξ). (10)

To perform the necessary statistical averages on the
exchange field values, we use a simple mean field approach
which consists in creating an effective medium characterized
by an average of these fields [22]. The effective medium is
defined by its associated effective Hamiltonian Ĥeff = 〈Ĥ ′〉,
which depends in a self-consistent way on 〈νl〉 and 〈ξl〉. The
average values of the local charge and exchange fields are
calculated by fluctuating the ξl field of a representative site
immersed into the effective medium. To include in a direct
and simple way all the contributions to the free energy coming
from all the sites of the effective medium perturbed by the
fluctuating site, the free energy F(ξl) is calculated through the
integration of its total derivative

dF(ξl)

dξl
= J

2
(ξl − 2〈Ŝlz 〉′ξl

), (11)

instead of calculating it directly from a partition-function-like
expression. The quantity 〈Ŝlz 〉′ξl

in equations (9) and (11) is
calculated as

〈Ŝlz〉′ξl
=

∫ +∞

−∞

(∑

ασ

σnlασ (ε)

)
f (ε) dε, (12)

where f (ε) is the Fermi function and nlασ (ε) is the density of
states (DOS) at the orbital lασ of the system represented by
the Hamiltonian Ĥe+ f ≡ Ĥeff + �̂l . In turn

�̂l =
∑

ασ

[U(νl − 〈νl〉) + σ J/2(ξl − 〈ξl〉)]n̂lασ .

Analogously, the quantity 〈L̂lz〉′�ξ in equation (10) is calculated
as

〈L̂lz 〉′ξl
=

∫ +∞

−∞

(∑

σ

2∑

α=−2

αnlασ (ε)

)
f (ε) dε. (13)

The nlασ (ε) DOS appearing in equations (12) and (13)
is obtained by using the known relation nlασ (ε) =
−1/π Im{(Ĝe+ f (ε))lασ }, where (Ĝe+ f (ε))lασ is the diagonal
matrix element of the Green function for the system with
Hamiltonian Ĥe+ f . Additionally, the Dyson equation is used
to obtain Ĝe+ f (ε) from Ĝeff(ε) and �̂l . The matrix elements
of Ĝeff(ε) are calculated by using the Haydock–Heine–Kelly
recursion method [23].

3. Results

Two bcc Fe slabs, (001) and (110), are considered for the
calculations in this work. The slabs are modeled by employing
Fe films thick enough for reaching the bulk behavior for zero
and finite temperatures at their inner atomic layers. A thickness
of 20 monolayers was observed to be enough for obtaining this

Figure 1. Lateral cuts for the (001) and (110) Fe slabs. The layers of
equivalent atoms forming atomic planes parallel to the surface of the
slabs are numbered with l . Atomic sites with different gray levels
belong to different atomic planes parallel to the plane of the figure
(transverse to the slabs’ surface). The vector indicates the surface
normal direction.

behavior. In figure 1 we show a lateral cut for each one of
the two slabs. All the atoms in planes parallel to the surface
of the slabs are grouped in equivalent atom layers numbered
with l and referenced as ‘l layers’ in this work. The l = 1
layer is the surface layer and l increases going into the slabs
(see the figure). The density of atoms in figure 1 is adjusted to
the same value in both (001) and (110) slabs, for appreciating
in a clear way the differences in the local atomic environment
between layers with the same l value in both slabs. To perform
the calculations, the U , J and tαβ

lm parameters are determined
for given values of the d electron number, SOC parameter
and ground state bulk d band width, following a strategy
similar to that used in a previous work involving ground state
calculations [24]. Namely, we are using a d electron number
of nd = 7.2, a spin–orbit coupling parameter of ξSOC =
0.05 eV [8] and the tαβ

lm are taken as proportional to the Slater–
Koster parameters (canonical values [25] varying as the inverse
fifth power of the inter-atomic distance, ddσ :ddπ :ddδ =
−6:4:−1) fitting a ground state d band width of Wdb = 6 eV
for Fe bcc bulk. The direct average Coulomb integral is taken
as U = Wdb and the exchange average Coulomb integral as
J = 0.68 eV. This value of J gives a total local moment of
μlz = (2.09μB)spin + (0.11μB)orb = 2.2μB at T = 0 for Fe
bcc bulk.

The spin and orbital local magnetizations are calculated
along two different magnetization directions for each slab. For
the case of the (001) [(110)] Fe slab, a first orientation of the
spin and orbital z axes into the (001) [(110)] direction allows
one to calculate the normal spin Mlz (T ) and orbital Llz(T )

magnetizations. A second orientation of the spin and orbital z
axes into the (100) [(1̄10)] direction allows one to calculate
the parallel spin Mlx (T ) and orbital Llx (T ) magnetizations
associated with this direction. Due to the fact that the values of
Mlx (T ) differ from those of Mlz (T ) by at the most 1×10−3μB,
they are not shown in this work. The results for the l =

4



J. Phys.: Condens. Matter 22 (2010) 056001 R Garibay-Alonso et al

7, 8, . . . layers do not present significant differences to the eye
in comparison with the results for the l = 6 layer, therefore
they are not shown either.

3.1. (001) Fe slab results

The results for the temperature dependence of the spin and
orbital local magnetizations for the (001) Fe slab are shown
in figure 2. We discuss first the zero temperature limit for the
results of the spin local magnetization found in figure 2(a). The
surface layer (l = 1) has the biggest Mlz (T → 0) value in
the figure, which is in total agreement with the fact that the
atomic sites forming this layer are the least inter-atomically
connected in the system and, therefore, are the ones having
the largest tendency to localize electrons (band narrowing) and
to accumulate spin moment at T → 0 (Stoner criteria). On
the other hand, as the spin polarization can be electronically
induced from one atomic region to another in an itinerant
system, we should expect the relatively large T → 0 spin
magnetization at the l = 1 layer to induce, when we go from
l = 1 to 6, a simple decreasing behavior towards the ground
state bulk value in Mlz (T → 0). However, a decreasing
sequence of values is only observed from l = 1 to 3. At
the l = 4 layer we observe that Mlz(T → 0) increases and
that, after this layer, it starts a damped-like oscillation towards
the ground state bulk value with l. This behavior is related to
small charge transfers occurring at the superficial region of the
slab and, specifically, to a slight band broadening occurring at
the l = 2 and 3 layers. It is worth mentioning that all the
obtained results for the spin local magnetization at T → 0 are
in good agreement with calculations performed independently
by ourselves at T = 0 within the same model (as we will
show in section 3.3, this is not trivial). Moreover, the physical
explanations given here about the layer distribution of the spin
magnetic local magnetization at T → 0 coincide with those
given in numerous works involving ground state calculations
for low dimensional TM systems [26] within the same model.
In this sense, we observe the T → 0 limit of the obtained
results for Mlz(T ) to be correct.

Recall that the atomic sites forming the surface layer
(l = 1) are the least inter-atomically connected in the
(001) Fe slab. This implies, besides the fact that this layer
accumulates the biggest spin local magnetic moments in the
system at T → 0, that this layer also has the lowest magnetic
stability level against thermal fluctuations in the system (less
ferromagnetic inter-atomic couplings for a site of the layer).
This is clearly observed in figure 2(a): the Mlz (T ) curve for
l = 1 goes to zero with temperature faster than all the other
spin magnetization curves and even crosses them all but the
l = 3 spin magnetization curve. In turn, the relative low
ferromagnetic stability at the surface layer (l = 1) should
also weaken the resistance against thermal fluctuations on
the ferromagnetism of the neighboring l layers. Therefore,
the Mlz (T ) curve for l = 2 and 3 should go to zero with
temperature more quickly than the curves for l = 4, 5 and
6. However, the spin magnetization curve for the l = 2 layer
is observed to go to zero at the lowest rate with temperature
in figure 2(a). An analysis of the F(ξl) curves for the six

Figure 2. Temperature dependence of the spin and orbital local
magnetizations calculated along the z [(001)] and x [(100)]
directions of the (001) Fe bcc slab. The results are given only for the
six first atomic layers defined in figure 1. We have in (a) the spin
results, in (b) the orbital results for the z direction, in (c) the orbital
results for the x direction and in (d) the spin results normalized with
the corresponding ground state limit value.

first l layers of the slab indicates that the atoms of the l = 1
layer have a tendency to an antiferromagnetic coupling with
their neighboring atoms, including those of the same l = 1
layer (see the next paragraph). This tendency diminishes with
temperature at the same time as the spin local magnetization
and this is the cause for the low decaying rate with temperature
observed for the spin magnetization at the l = 2 layer.
Although, in a very weak way, the l = 3 layer presents
basically the same behavior in the spin magnetization as the
l = 2 layer (see figure 2(d)). For the remaining l = 4, 5 and 6
layers, the local spin magnetization decreases with temperature
at a very similar rate, almost the bulk’s rate.

5
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In order to clarify the relatively slow decaying with
temperature of the local magnetization at the l = 2 layer of
the (001) slab (related to the tendency to antiferromagnetic
coupling mentioned in the previous paragraph), it is necessary
to perform an additional analysis on the temperature
dependence of the free energy F(ξl) for its neighboring l = 1
layer. Figure 3 shows the results for the free energy change
�F(ξl) ≡ F(ξl) − F(ξ+

l ) associated with the fluctuations of
the exchange field ξl at the surface l = 1 layer, where ξ+

l
denotes the position of the minimum of the free energy for
ξl > 0. The results are presented for several representative
reduced temperatures t = T/TC. From the figure, we observe
the existence of two well defined minima F(ξ−

l ) and F(ξ+
l )

located at ξl < 0 and ξl > 0, respectively, for every t
value on the figure. The position of these two minima stays
approximately fixed when the temperature changes, which
indicates that the ξl=1 local exchange field fluctuates keeping
an approximately constant modulus. We also observe from
the figure a nonmonotonous behavior with temperature of the
free energy change �F(ξ−

l ) = F(ξ−
l ) − F(ξ+

l ) required
for flipping the exchange field from ξ+

l to ξ−
l . This flipping

free energy change has a relative small value at T → 0,
increases with temperature reaching a maximum value at
t = 0.6 and decreases, as physically expected, when we
approach t = 1 (the Curie temperature). The fact that
�F(ξ−

l ) has a relatively small value and that it first increases
with temperature for relatively low temperatures indicates
a tendency to antiferromagnetism of an electronic origin at
the surface l = 1 layer, which is decreasing in strength
with temperature. Notice that a behavior not showing this
tendency to antiferromagnetic coupling would be one where
the free energy change does not have a relatively small
value at low temperature and decreases monotonously with
temperature until the Curie temperature is reached. Finally,
this tendency to antiferromagnetism can not be obtained by
using solid local magnetic moment models with fixed inter-
atomic ferromagnetic coupling, as for example, by using the
Heisenberg model.

By orientating the spin and orbital z axes into the (001)
direction, we calculate the orbital local magnetization for the
z [(001)] direction of the slab. The results are shown in
figure 2(b). We observe from the figure that when we go from
the surface l = 1 layer to the l = 2 layer, Llz(T → 0)

quickly decreases to almost its ground state bulk value, having
a drop of nearly 50% in the value of the orbital moment.
Additionally, we observe that, although not in a proportional
way, the variation of Llz(T → 0) with l roughly follows the
observed trend for Mlz(T → 0) in figure 2(a). The local
narrowing or broadening of the d band coming from the change
in the local atomic environment affect both spin and orbital
magnetizations5. However, this occurs in a weaker way for
the orbital magnetization because of the small intensity of the
SOC interaction. By orientating the spin and orbital z axes into
the (100) direction, we calculate the local orbital magnetization

5 As it is known, the orbital magnetization at zero temperature in the d band
model is generated mostly in the minority spin band by the orbital unfolding
caused by the SOC interaction; its magnitude is determined by the height of
the DOS at the Fermi level.

Figure 3. Dependence on the reduced temperature t = T/TC of the
�F(ξl) ≡ F(ξl) − F(ξ+

l ) free energy associated to the exchange
fluctuations of ξl at the surface l = 1 layer, where ξ+

l denotes the
position of the minimum of the free energy for ξl > 0.

for the x [(100)] direction of the slab. The results are shown
in figure 2(c). We notice that at the surface l = 1 layer,
Llx (T → 0) is slightly greater than Llz(T → 0), this is
due to the local anisotropy in the atomic environment existing
there. A detailed explanation for this magnetic anisotropy
effect relies on the characteristic atomic environment at the
surface layer of the system and on the specific d band filling of
a Fe system6. Moreover, Llx (T → 0) is immediately reduced
to approximately the ground state bulk value when we go from
the superficial l = 1 layer to the l = 2 layer and, in general, its
behavior with l roughly follows that of Mlz (T → 0). However,
the anisotropy between the z and x magnetization directions
observed at the l = 1 layer is not clearly preserved in the
rest of the l layers. This is due to the specific form of the
local DOS around the Fermi energy level preventing a possible
induction of magnetic anisotropy from the l = 1 to the rest
of the layers. As for the case of the T → 0 spin results,
the obtained results for the orbital magnetization at T → 0
are in good agreement with T = 0 calculations performed
independently by ourselves within the same model. Besides the
physical explanations given here, these kind of results are well
known and discussed in many ground state theoretical works
found in the literature and performed for related TM systems,
as for example thin films [27].

For the same l value, the Llz(T ) and Llx (T ) curves in
figures 2(b) and (c) do not show significant differences from
each other at finite temperature. The few slight observed
differences between both magnetization curves come from the
T → 0 anisotropy effects mentioned in the last paragraph. As

6 The local atomic environment in the surface layer causes a small
delocalization in the electronic states with orbital angular moment normal to
the surface. A larger value of orbital moment implies a larger delocalization.
At the same time, the opposite occurs for states with orbital angular moment
parallel to the surface. This delocalization and the characteristic d band filling
of Fe (around the half filling of the minority band) causes the normal angular
moment atomic states to average for less magnetization than the parallel ones.
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the temperature rises from zero, the orbital local magnetization
at every l layer of the slab decreases together with the spin local
magnetization, reaching a zero value at the Curie temperature
(TC). In a general way, the shape of the orbital magnetization
curves in figures 2(b) and (c) resembles that of the spin
magnetization ones in figure 2(a). Geometrical aspects such as
the slope and concavity of a given orbital magnetization curve
are similar to those of the corresponding spin magnetization
curve. For instance, the orbital magnetization curve for the
surface l = 1 layer has an approximately linear trend at low
and intermediate temperatures in the interval [0, TC], just like
the one appearing in the corresponding spin magnetization
curve. This resemblance of the orbital magnetization curves to
the spin magnetization curves comes from the property of the
SOC interaction generating a small orbital unfolding of every
spin state occurring at finite temperature. As the temperature
rises from zero, spin excited states appear in the system,
bringing with them configurations of small but non-zero orbital
polarization different to that of the spin ground state. For low
temperatures, positive spin states with exchange values smaller
than that of the spin ground state play the key role in the system
and, therefore, the average orbital polarization decreases with
temperature, mainly because the orbital contribution of these
spin states is smaller than that of the spin ground state. For
high temperatures, negative spin states appear in the system
bringing with them orbital contributions that cancel those of
the positive spin states. Finally, at the Curie temperature, a full
canceling occurs for both orbital and spin polarizations.

The Curie temperature value obtained with our approach
(TC ≈ 2000 K) is comparable with other reported values in
the literature involving first principles calculations, electron
correlation effects and/or more sophisticated mean field
approaches [12, 14]. However, this value is appreciably larger
than the experimental one of T exper

C ≈ 1043 K. The inclusion
in our approach of a more sophisticated mean field theory,
additional spin excitations like spin-waves, non-collinear
moments, short-range magnetic order effects or/and electronic
correlations beyond the static approximation, should tend to
reduce our TC value, improving in this way the quantitative
agreement between the calculated and the experimental value.

3.2. (110) Fe slab results

The local atomic environment at the superficial region of the
(110) Fe slab is qualitatively different to that of the (001) Fe
slab. For the (110) Fe slab, the nearest neighbor (NN) distance
occurs between atoms of adjacent l layers and between atoms
of the same l layer. On the other hand, for the (001) Fe slab, the
NN distance occurs only between atoms of adjacent l layers.
This implies that at the superficial region of the (110) Fe slab,
the electronic itinerancy occurring between atoms of the same
l layer is as important as those occurring between adjacent l
layers whereas, for the case of the (001) Fe slab, the itinerancy
occurring between adjacent l layers is the most important. In
the particular case of the surface l = 1 layer, one can anticipate
that the level of electronic itinerancy at this layer for the case
of the (001) slab is going to be lower than for the case of the
(110) slab.

Figure 4. Temperature dependence of the spin and orbital local
magnetizations calculated along the z [(110)] and x [(1̄10)]
directions of the (110) Fe bcc slab. The results are given only for the
six first atomic layers defined in figure 1. We have in (a) the spin
results, in (b) the orbital results for the z direction, in (c) the orbital
results for the x direction and in (d) the spin results normalized with
the corresponding ground state limit value.

Figure 4 shows the results for the temperature dependence
of the spin and orbital local magnetizations for the z [(110)]
and x [(bar110)] directions of the (110) Fe slab. Figure 4(a)
contains the spin, figures 4(b) and (c) the orbital and figure 4(d)
the normalized spin magnetization results. We observe in
figure 4(a) that the ground state limit of the spin local
magnetization behaves in a very similar way with l to that
observed in the (001) Fe slab case: it decreases when we go
from l = 1 to 3 and then increases again when we go from
l = 3 to 4. As for the (001) slab, small charge transfers occur
in such a way that for this slab we do not observe a simple
decreasing behavior with l in Mlz (T → 0). In spite of this
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similar behavior, there is a systematic qualitative difference
between the (110) and (001) spin ground state limits. The
change of Mlz(T → 0) between adjacent l layers is, in general,
smaller than in the (001) case and, unlike this last case, the
ground state Fe bcc bulk value is practically reached at the
l = 4 layer. In general, the deviation with respect to the ground
state bulk behavior in the superficial region of the (110) Fe slab
is smaller than in the superficial region of the (001) Fe slab.
This is due to the difference between the atomic environment
in the superficial region of the two slabs. At finite temperature,
we also notice that the spin magnetization curves change with
l in a smoother way than in the (001) case (see figure 4(a)). For
instance, the Mlz (T ) curve for the surface layer (l = 1) does
not have the linear trend observed in the case of the (001) slab,
because the inter-atomic connectivity in this layer is not low
enough to cause this behavior; even so, the decaying rate with
temperature of the spin local magnetization in the l = 1 layer
is found to be larger than in the bulk-like l = 4, 5, 6 layers
for low and intermediate temperatures in [0, TC]. Another
difference, with respect to the (001) slab results, is the fact
that the spin magnetization curve for the l = 2 layer does
not go to zero with temperature in a slower way than for the
remaining layers in figure 4(a). The effect of slow decaying
with temperature of the magnetization occurs in the l = 3
layer, although in a weaker way. The small charge transfers
occurring in this case are not strong enough for creating,
with the same intensity, the tendency to antiferromagnetism
observed in the l = 1 layer of the (001) Fe slab.

The orbital local magnetization results for the (110) Fe
slab are shown in figures 4(b) and (c). Figure 4(b) contains the
results for the magnetization direction along z and figure 4(c)
the results for the magnetization direction along x . The l
dependence in figure for Llx (T → 0) and Llz(T → 0)

follows roughly that already observed for Mlz (T → 0) and,
as also observed for those Mlz (T → 0) results, the change
of Llx (T → 0) and Llz(T → 0) between adjacent l layers
is smaller than in the case of the (001) slab, due to the
difference between the atomic environment in the superficial
region of the two slabs. The anisotropy effect Llx (T →
0) > Llz(T → 0) occurring in the surface l = 1 layer
is also observed to be less significant that in the (001) case.
Lastly, at finite temperature, the shape of each orbital local
magnetization curve resembles that of its corresponding spin
local magnetization. For instance, the lack of a linear trend
with temperature on the Mlz(T ) curve for the surface l = 1
layer also happens in the corresponding Llx (T ) and Llz(T )

curves.

3.3. Varying the d band filling and performing geometrical
relaxations

The results obtained at this point in this work reflect the
structural characteristics of the studied systems very well.
However, there are several points related to the results which
need to be addressed. The most important one is the fact that
in the experimental results of Pfandzelter et al one observes a
gradual transition in the temperature dependence of the local
magnetization when one goes into the internal region of the

slab. In particular, the observed trend in our calculation for the
temperature dependence of the magnetization in the l = 2 layer
((001) slab) is not observed in the corresponding experimental
result. By reviewing the T → 0 limit of our results and
additional ground state calculations, we arrive at the conclusion
that, in the first instance, structural relaxations are required
in the calculations. Due to limitations in computational
time and in the theory used, a convenient scheme for
performing these structural relaxations is to initially carry out
systematic modifications at zero temperature on the inter-l-
layer distances in the non-bulk region of the slabs. Then, the
observed qualitative changes in the Mlz (T = 0) values could
indicate sets of structural configurations defined by a similar
qualitative behavior in the temperature dependence of the local
magnetization. This will help us to reduce the number of
structural configurations to be explored at finite temperature
when we search for the required experimental behavior. It is
worth mentioning that due to the nature of the model used, here
we do not have the option of performing standard geometrical
relaxations ruled by energy considerations as in the case of
first principle calculations. Even more, we also can not
directly take structural parameters coming from ground state
first principle optimizations for our calculations, because of the
natural differences between first principle Hamiltonians and
our used model. These reasons lead us to perform a relaxation
process consisting of finding correct parameters for the model
which give the observed experimental trends on temperature
for magnetic properties. In spite of this, we start the relaxation
process taking into account results coming from ground state
first principle calculations existing in the literature.

The variation on the inter-l-layer distances for the ground
state structural relaxations is kept in the range of ±10% of
the corresponding bulk inter-layer value. The relaxations are
performed only for the (001) slab and carried out following
existing experimental and theoretical relaxation results [28].
The first goal in the relaxation process was to find a
configuration for the inter-l-layer distances which led to a
decreasing trend in Mlz(T = 0) for increasing l (going into
the slab), thinking this could help in obtaining the required
experimental behavior in our results. The variation of only
two of the first inter-l-layer distances was enough to get the
desired behavior in Mlz (T = 0). It was obtained for values
of inter-l-layer distances that represent, first, contractions of
approximately above 5% (with respect to the corresponding
bulk inter-layer value) on the inter-layer distance between the
l = 1 and the l = 2 layers and, second, expansions of
approximately above 6% on the inter-layer distance between
the l = 2 and 3 layers. After having found them, finite
temperature calculations for only the spin magnetization (SOC
interaction switched off) were performed for several inter-l-
layer distances around these values and also around the non-
relaxed values. As expected, the finite temperature calculations
around the relaxed values show results with a behavior
qualitatively similar to those of the non-relaxed situation.
However, the finite temperature calculations around the relaxed
values present a problem. They have the apparent flaw
of not reducing to our mentioned independently performed
ground state calculations when T → 0. The apparent
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flaw is mainly observed in the superficial layer of the slab.
Antiferromagnetic-like instabilities, possibly related to the
tendency to antiferromagnetic behavior already observed in the
previous sections of this work, play a key role by diminishing
the limit values Mlz (T → 0) with respect to those of our
independently performed ground state calculations.

The antiferromagnetic behavior in the d band model is
generally associated with low d band filling effects. Depending
on the system under study, the antiferromagnetic behavior
predicted by this model can be considered correct or incorrect.
For TM systems with a d band filling close to the half
band filling, one expects results showing an antiferromagnetic
behavior to be correct whereas, for TM systems with a d band
filling close to the full band filling, such behavior is expected
to be incorrect. For TM systems between these two extreme
cases, a scan of the d band filling is always necessary to take
into account all possible physical results. On the other hand,
it is known that the s and/or p electronic bands with bare
energy levels above those of the d band in a TM system help
to reduce, or to eliminate, weak antiferromagnetic behaviors.
Therefore, its inclusion sometimes becomes necessary for
the calculations. However, most of the time, some d–sp
hybridization and sp band filling effects can be emulated by
slightly increasing the d band filling in the d band model
(the direct Coulomb and exchange interactions associated with
the involved sp electrons generally do not play an important
role for the magnetism). If this is the case, a possible
extension to a spd band model can be avoided. Taking
into account these considerations, we decided that the correct
approach for reproducing the observed finite temperature
experimental behavior must include d band filling variations
in the calculations. Despite the resulting approach turning out
to be relatively slow, the expected finite temperature results are
straightforwardly obtained, at least approximately for the first
four l layers. For a d band filling of about 7.4, the disagreement
of the limit values Mlz (T → 0) with our independently
calculated ground state calculations disappears and, in this
way, we obtain finite temperature results more similar to the
experimental ones.

Figure 5 shows structurally relaxed representative results
for the temperature dependence of the spin and orbital
magnetization (SOC interaction switched on) calculated along
the z [(001)] and x [(100)] directions of the (001) slab. The
values for the corresponding inter-l-layer distances mean a
contraction of ∼5% on the first inter-layer distance (l = 1
and 2) and an expansion of ∼5% on the second one (l = 2
and 3). The used d band filling is also modified to nd = 7.4.
For this new value of nd, the value for the exchange average
integral J has been slightly increased to again fit a total local
moment of μlz = 2.2μB at T = 0 for the bulk. Figure 5(a)
shows the results for the temperature dependence of the spin
local magnetization on the z direction Mlz (T ) as obtained
from equation (9) and figure 5(d) shows these same results
but normalized as Mlz (T )/Mlz (T → 0). We first notice in
figure 5(a) the achievement in getting a decreasing behavior
as a function of l in Mlz (T → 0), albeit the changes from
l = 1 to 2 and from l = 5 to 6 are not very evident to the eye.
It was checked that our independently calculated ground state

Figure 5. Temperature dependence of the spin magnetization
calculated along the z [(001)] and x [(100)] directions of the (001)
slab. The results are representative and include a structural relaxation
and a variation of the d band filling. The inter-l-layer spacing and d
band filling values used for the calculations are indicated in the text.
The thickness of the film modeling the slab is 10 monolayers. We
have in (a) the results for the temperature dependence of the spin
local magnetization on the z direction Mlz (T ), in (b) those for the
orbital local magnetization in the z direction Llz(T ), in (c) those for
the orbital local magnetization in the x direction Llx (T ) and in (d)
the same results as in (a) but normalized as Mlz (T )/Mlz (T → 0).

values are recovered from the Mlz (T ) values when T → 0. On
the other hand, for finite temperatures we observe in the figure
that the temperature dependence of the spin magnetization is
becoming qualitatively similar to the experimental one, at least
for the first four l layers. For instance, the decreasing with
temperature of the local magnetization in the l = 2 layer is
now slightly slower than that in the l = 1 layer and also slightly
faster than that in the l = 3 layer. The Mlz (T )/Mlz (T → 0)

curves displayed in figure 5(d) show in a clearer way, the fact
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that the behavior of the spin local magnetization as a function
of the temperature changes gradually to bulk-like when we go
into the slab, at least for the first four l layers. Finally, for the
results for the orbital magnetization on figures 5(b) and (c), we
can observe that all the observed properties for the non-relaxed
and nd = 7.2 situations are recovered. From all the previous
observations, we have the following preliminary conclusion:
the itinerant nature of the magnetism of TM systems, the
main characteristic of the d band model, generates a very
complex dependence of the ground state and finite temperature
magnetism on the geometrical structure of the slabs and d band
filling. Further geometrical relaxations, which would include
a change on inter-l-layers distances beyond the ones already
taken into account in this work, are necessary for recovering in
a better way the experimental behavior.

4. Summary and conclusions

Our work reports for the first time, to the best of our
knowledge, calculations for the temperature dependence of
the orbital local magnetization in the superficial region of a
ferromagnetic TM system. The temperature dependence of the
spin and orbital magnetizations has been calculated for two
Fe slab systems presenting different local atomic environments
between them in their superficial region. The calculations were
performed in the framework of an electronic d band model
which is known to reproduce well the interplay between the
local atomic environment and electronic itinerancy at zero
temperature. The spin and charge thermal fluctuations are
treated within the static approximation and a simple mean
field approach, which allows us to perform the calculations
in feasible computational times. An acceptable clear complex
dependence on the local atomic environment and d band filling
is observed for the ground state and finite temperature local
magnetization in the superficial region of the slabs. The
complexity of this dependence can not be predicted in a direct
way by Heisenberg-like models of localized atomic moments.
This is clearly understood because in the case of an electronic
itinerant model this coupling is the result of the electronic
properties of the system whereas, in models of localized atomic
moments, the inter-atomic magnetic coupling enters generally
as a parameter.

As a starting configuration, the interplanar atomic
distances in the superficial region of the slabs were taken
as equal to the bulk system. For this case, the zero
temperature limit of the local orbital and spin magnetization
was observed to match very well with ground state results
independently calculated by ourselves. Furthermore, a
well known characteristic physical behavior related to the
effects of electronic localization on the spin and orbital local
magnetizations in the superficial atomic layers of the slabs
was observed in the results for the T → 0 limit. Moreover,
well known characteristic anisotropy effects on the T → 0
limit of the orbital local magnetization in these layers were
also observed in our calculations. On the other hand, at finite
temperatures, the local spin magnetization was observed to
agree only in a partial way with experimental results. With
the goal of recovering in a more complete way this agreement

between experimental and theoretical results, modifications
to the original superficial interplanar atomic distances were
performed. However, these modifications brought up the
apparent flaw of mismatching the zero temperature limit of
the local spin magnetization with our independently calculated
ground state results. This apparent flaw is related to a tendency
to antiferromagnetism of electronic origins observed in the
most superficial atomic layers of the slabs. The tendency
to antiferromagnetism was reduced by increasing, by a small
quantity, the d band filling value on the systems and, in this
way, the calculated results took a form qualitatively more
approximating to the experimental ones.

In a general way, the temperature dependence of the
orbital local magnetization is observed to follow the same trend
as the spin local magnetization, with some slight differences.
For instance, the approach to bulk-like behavior when we go
into the internal region of the slabs is faster in the orbital case
for both ground state and finite temperature results.

Finally, we consider that some extensions to the used
theory and mean field approach would certainly be desirable
for quantitatively improving our results. For instance, the
inclusion of non-collinear spin fluctuations and the use of
more sophisticated mean field approaches would be desirable
to obtain a Curie temperature value closer to the experimental
one.
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